PBPK with FcRn and Apoptosis Dynamics

Physiologically-Based Pharmacokinetic (PBPK) Model
FcRn and Apoptosis Dynamics

 

·         Physiologically-Based Pharmacokinetic (PBPK) Model

o        Tumor, Bone, Heart

§         Expansion of Baxter model (pharmacodynamics)

·         Apoptosis

§         Two-pore transcapillary flux model

·         Two-pore model under non-isogravimetric conditions

·         Solute transport across a permeable barrier in the presence of volume flow (I)

·         Solute transport across a permeable barrier in the presence of volume flow (II)

·         Summary of the two-pore model (*.doc)

o        Skin and Muscle

§         Expansion of Baxter model (pharmacodynamics)

·         Apoptosis

§         Two-pore transcapillary flux model

·         Two-pore model under non-isogravimetric conditions

·         Solute transport across a permeable barrier in the presence of volume flow (I)

·         Solute transport across a permeable barrier in the presence of volume flow (II)

·         Summary of the two-pore model (*.doc)

§         novel FcRn sub-model

·         Mathematical Model of FcRn sub-model

·         FcRn expression in various organs

o        Kidney

§         Expansion of Baxter model (pharmacodynamics)

·         Apoptosis

§         Two-pore transcapillary flux model

·         Two-pore model under non-isogravimetric conditions

·         Solute transport across a permeable barrier in the presence of volume flow (I)

·         Solute transport across a permeable barrier in the presence of volume flow (II)

·         Summary of the two-pore model (*.doc)

o        Liver

§         Expansion of Baxter model (pharmacodynamics)

·         Apoptosis

§         Two-pore transcapillary flux model

·         Two-pore model under non-isogravimetric conditions

·         Solute transport across a permeable barrier in the presence of volume flow (I)

·         Solute transport across a permeable barrier in the presence of volume flow (II)

·         Summary of the two-pore model (*.doc)

o        Lung

§         Expansion of Baxter model (pharmacodynamics)

·         Apoptosis

§         Two-pore transcapillary flux model

·         Two-pore model under non-isogravimetric conditions

·         Solute transport across a permeable barrier in the presence of volume flow (I)

·         Solute transport across a permeable barrier in the presence of volume flow (II)

·         Summary of the two-pore model (*.doc)

o        Plasma (central pool)

o        GI and Spleen

§         Expansion of Baxter model (pharmacodynamics)

·         Apoptosis

§         Two-pore transcapillary flux model

·         Two-pore model under non-isogravimetric conditions

·         Solute transport across a permeable barrier in the presence of volume flow (I)

·         Solute transport across a permeable barrier in the presence of volume flow (II)

·         Summary of the two-pore model (*.doc)

o        Augmentations

§         FcRn Submodel

§         Variable Tumor Mass Submodel

o        Parameters & Parameter Estimation

§         Parameters used in PBPK model

·         Parameter units and definitions

§         Adjustable Parameters

§         SAAM II Simulation and Parameter Estimation Conditions

§         Results of SAAM II parameter estimation

o        Statistics

§         Objective function values

§         Covariance Matrix

§         Correlation Matrix

o        Simulations

§         Blood, Tumor, Lungs, Kidneys, Liver, Spleen, GI Tract, Bone, Carcass

o        Predict F(ab’)2 Biodistribution

§         Using modified intact mAb PBPK model

§         Set kon for interaction between antibody Fc portion and FcRn to zero

§         Fit tumor growth model to data from F(ab’)2 biodistribution experiment

§         Change antibody specific parameters as listed in Baxter et al.

§         Predicted curve for anti-CEA F(ab’)2 fragment & biodistribution data: Blood, Tumor, Lungs, Kidneys, Liver, Spleen, GI Tract, Bone Carcass

o        SAAM II

§         intact mAb

§         F(ab’)2

Return to Top

 

 

·        FcRn and Apoptosis Dynamics (image key)

o        FcgR

§         FcgR expressing cells amplify CD20-mediated apoptosis in Ramos B cells

§         Fc common g chain (component of activating FcRs) knock-out mice exhibit decreased susceptibility to mAb / FcRg meditated anti-tumor action

§         FcgRIIB (inhibitory FcR) knock-out mice exhibit increased susceptibility to mAb / FcRg meditated anti-tumor action

§         In vitro and in vivo properties of the D255A mutant antibody

o        Ca2+

§         Intracellular calcium mobilization initiated by anti-CD20 mAb + GAM

§         Ca2+ chelators inhibit apoptosis induced by hypercrosslinking CD20

§         Calcium chelators inhibit CD20-mediated apoptosis in Ramos B cells

§         PP2 inhibits CD20 mediated calcium influx (Ca2+ influx is downstream of Lck/Fyn/Hck phosphorylation)

§         Effect of calcium chelators

o        Rituxan

§         Rituxan is a Chimeric Anti-CD20 Monoclonal Antibody

§         Apoptotic effects of CD20 mAbs

§         Rituxan alone induces apoptosis while 1F5 and 2H7 require GAM mediated hyper-crosslinking (Ramos B cells analyzed by flow cytometry after 18-22 hours)

o        Topology of CD20

o        Fyn, Lck, Lyn

§         Fyn, Lck, and Lyn are constitutively associated with CD20

§         Inhibition of Lck and Fyn inhibits apoptosis (p < 0.05)

§         PP2 (Src family kinase inhibitor) inhibits CD20-mediated apoptosis in Ramos B cells

§         PP2 inhibits CD20-mediated caspase-3 activation

o        PLCg2

§         Tyrosine phosphorylation of PLC-g1 and PLC-g2 is induced by CD20 stimulation

§         CD20 mediated PLCg2 phosphorylation

o        B-cell receptor

§         Correlation between anti-CD20 and BCR-mediated apoptosis

§         Similar changes of c-myc and Berg-36 RNA expression level after CD20 and BCR cross-linking

§         CD20 and the BCR transiently colocalize on intact Ramos cells

§         BCR/CD20 dissociation requires BCR stimulation

o        Bcl-2

o        Bax

o        Mcl-1 and XIAP

o        Cytochrome c

o        p38 MAPK

§         Rituximab-induced apoptosis and p38 MAP-kinase activity

§         p38 inhibitor decreases % apoptosis; MEK inhibitor has no effect on CD20 mediated apoptosis

o        Jun / Fos

o        AP-1

o        Caspase-9, -3, PARP

§         Change in caspase and apoptosis proteins in vivo after treatment with rituximab

§         CD20XL induces cytochrome-c release, caspase-9 and –3 activation, and PARP cleavage

§         Effects of CD20 triggering on PARP, SP1, and Caspase-3

o        SP1

o        Mathematical Model [Ca2+]cyt Oscillations

§         VisSim: Ferl-DeYoung-Marhl calcium model

o        Evidence for a second, caspase independent pathway

§         Caspase inhibition does not completely block CD20 mediated apoptosis

§         Overexpression of Bcl-2 does not inhibit CD20 mediated apoptosis

§         Overexpression of Bcl-2 prevents cytochrome c release and dissipation of mitochondrial transmembrane potential (Δψm), but does not completely inhibit CD20-mediated apoptosis

o        Protein Domain Interactions

§         Schematic of IP3 generation

§         Schematic of Lyn activation

·         Evidence for the involvement of kinases other than Fyn and Lck

·         Previously unidentified CD20 associated p75/80

1.       CD20 association with 75/80- and 50-60-kDa proteins tyrosine phosphorylated in vivo

2.       Association of CD20 with p75/80, p56lck, and p59fyn in CD20-transfected Molt-4 T cells

3.       Deletions involving the cytoplasmic regions of CD20 do not eliminate associations with p75/80 or PTK

§         Schematic of regulation of cytochrome-c flux through mitochondrial membrane

§         Schematic of caspase-9 activation

§         Schematic of caspase-3 activation

§         Schematic of SP1 cleavage

§         Schematic of PARP cleavage

o        Flux / Activation / Formation (arrows)

§         Equations for IP3 generation

·         Simulation Equations

1.       Parameters

1.       Ad hoc parameter sensitivity analysis: n

2.       Ad hoc parameter sensitivity analysis: “kIP3

2.       VisSIM: Calcium 2002

·         Michaelis - Menten kinetics

1.       Derivation of Michaelis-Menten Equation (I)

2.       Derivation of Michaelis-Menten Equation (II)

3.       Derivation of Michaelis-Menten Equation: Example 1

4.       Derivation of Michaelis-Menten Equation: Example 2

§         Equations for Ca2+ flux through cell membrane

§         Equations for FcgR induced Ca2+ flux through cell membrane

§         Ca2+ flux equations for mitochondria

·        Marhl et al. model

1.       Parameters

2.       VisSIM: Marhl complex calcium oscillations

§         Ca2+ flux equations for ER

·        Complete Marhl et al. Model

·         Marhl et al. model

1.       Parameters

2.       VisSIM: Marhl complex calcium oscillations

·         Complete De Young - Keizer Model

1.       Parameters

2.       IP3 Receptor Kinetics

3.       VisSIM: De Young calcium model

Return to Top